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In this paper we study the space L p(+), 1�p�+�, + being a positive definite
matrix of measures. We prove that the set of all positive definite matrices of
measures having the same moments as those of + is compact in the vague topology,
and we give a density result for L1(+) which is an extension to the matrix case of
the classical result for scalar polynomials and positive measures due to Naimark.
� 1997 Academic Press

1. INTRODUCTION

For a fixed non-negative integer N, we consider N_N positive definite
matrices of measures +; i.e., for any Borel set A, the numerical matrix +(A)
is positive semidefinite (hence + is Hermitian). Associated to every +, the
space L p(+), 1�p��, is defined as follows:

Taking into account the inequality %�+�({+) I (here and in the rest of
this paper, we write % for the null matrix of size N_N ), we have that each
measure +i, j is absolutely continuous with respect to the trace measure {+
(for matrix A=(ai, j)1�i, j�N , the trace is defined by {A=�N

i=1 ai, i). Hence,
the Radon�Nikodym derivatives mi, j=d+i, j �d{+ are well defined except for
a set of null measures for the trace. The matrix of functions

M=(mi, j)
N
i, j=1=\

d+i, j

d{+ +1�i, j�N
,
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which is positive semidefinite, is called a derivative of + with respect to its
trace. M is formed by measurable functions integrable with respect to {+,
and for any Borel set A the equality

|
A

M(t) d{+(t)=+(A)

holds.
The inequality %�M(t)�I, which holds for t almost everywhere ({+), is

easily deduced from %�+�({+) I.
We suppose the matrix M(t) diagonalized as M(t)=Q(t) 4(t) Q*(t),

where Q(t) is a unitary matrix and 4(t) is the diagonal matrix obtained by
putting on its diagonal the eigenvalues *1(t), ..., *N(t) in increasing order.
We call P(t) the matrix of the projection operator from CN on the image
of M(t). P(t) is obtained by putting P(t)=Q(t) 4� (t) Q*(t), where 4� (t) is
the matrix obtained from 4(t) by substituting its non-zero entries by 1.

Given p, 1�p<�, and n a fixed natural number, we define the space
L p

n(+) as the set of n_N matrix functions f : R � Mn_N (C) such that
{( f (t) M(t)2�p f (t)*)1�2 # L p({+), and we define

& f &p, +=&{( f (t) M(t)2�p f (t)*)1�2&p, {+=\|R

{( f (t) M(t)2�p f (t)*) p�2 d{++
1�p

,

and if p=�, we say that f # L�
n (+) if {( f (t) P(t) f (t)*)1�2 # L�({+) and

then we define

& f &�, +=&{( f (t) P(t) f (t)*)1�2&�, {+ .

In both cases, we identify f (t) with g(t) if ( f (t)&g(t)) M(t)=%.
These spaces have already been defined and studied, for p=2 in

[3, 13, 19], and for 1�p�� in [14�16] in the more general context of
operator valued functions. To make this paper more complete and self-con-
tained we devote Section 2 to the study of the spaces L p(+), with matrix
values, and its properties. We will prove that they are Banach spaces and
that the dual of L p(+) is Lq(+), where 1�p<+� and q are conjugate
exponents (for p=2, we have that L2(+) is a Hilbert space). The proofs
provided here for these facts are new and easier than those in [14] (or
[3, 19] for p=2).

These spaces appear in connection with the theory of orthogonal matrix
polynomials (matrix polynomials which are orthogonal with respect to a
positive definite matrix of measures) and they are of great interest because
they provide a natural environment for approximating matrix functions
using matrix polynomials. During the past few years, some important
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results in the theory of orthogonal polynomials have been extended to
orthogonal matrix polynomials with the consequence that this theory of
orthogonal matrix polynomials is receiving an increasing amount interest
(see [4�10, 12, 20]).

In Section 3 of this paper we prove some results concerning topological
properties of the space of positive definite matrices of measures: Let +
be a positive definite matrix of measures +=(+i, j) i, j=1, ..., N satisfying
�R t n d |+i, j(t)|<� for any 1�i, j�N and for any n natural. The sequence
(�R tn d+(t))n will be called the sequence of moments of +. We can define
the set [+] of positive definite matrices of measures having the same
sequence of moments as those of +. As in the scalar case, the positive
definite matrix of measures + is called determinante if [+] is a singleton
and indeterminante if [+] consists of more than one positive definite
matrix of measures. We will prove that [+] is again compact for the vague
topology. Some related results can be found in [11].

In the scalar case, the characterization of the measures + for which C[x]
is dense in L1(+) was answered completely long ago by Naimark ([17]):
C[x] is dense in L1(+) if and only if + is an extreme point of the convex
set [+]. The case p=2 was also solved long ago by Riesz ([18]). More
recently, other density results for p>2 were obtained by Berg�Christensen
([2]), and Sodin ([21]). To complete this paper, we prove in Section 4 a
partial extension of Naimark's result:

Theorem 1. Given a positive definite matrix of measures +=M(t) d{+,
we call 0�*1(t)� } } } �*N (t)�1 to the eigenvalues of the matrix M(t)
ordered in increasing order. If there exists =>0 such that *1(t)�=, for every
t in the support of +, then the following statements are equivalent:

(1) The polynomials are dense in the space L1(+).

(2) + is an extremal measure of the set [+].

The existence of extremal points in the convex set [+] follows from the
compactness of [+].

2. THE SPACES L p: DUALITY

From the definition of the space L�
n (+) it follows that a function

f =( fi, j)1�i�n, 1� j�N belongs to the space L�
n (+) if and only if each

component fi, j belongs to the space L�({+). However, for the spaces
L p

n(+), with p�1, this property is not true. We next show an example of
this.
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Example. Let us consider the matrix of measures

+=
1
2 \

1
t&1

t&1
1 + /[0, 1](t) dm,

where dm denotes the Lebesgue measure in [0, 1]. Since the determinant
of M(t) is equal to 1

4 t(2&t), which is non-negative in [0, 1], the matrix of
measures + is positive definite. Its trace is /[0, 1](t) dm, that is, the Lebesgue
measure in [0, 1].

The singular value decomposition of the matrix M(t) in [0, 1] is

M(t)=
1

2
P \2&t

0
0
t+ P*, where P=

1

- 2 \
1

&1
1
1+ ,

and hence

M(t)2�p=
1

22�p P \(2&t)2�p

0
0

t2�p+ P*.

For the function

f (t)=\ 1
t1�p ,

1
t1�p+

we have that

[ f (t) M(t)2�p f (t)*] p�2

=_ 1
22�p

1
2 \

1
t1�p

1
t1�p+\ 1

&1
1
1+\

(2&t)2�p

0
0

t2�p+\1
1

&1
1 +\

1
t1�p

1
t1�p+&

p�2

=_1
2

1
2 p�2 \0

2
t1�p+\(2&t)2�p

0
0

t2�p+\
0
2

t1�p+&
p�2

=2 p�2&1,

which is constant and thus integrable with respect to {+=/[0, 1](t) dm. So
f # L p

1(+), for p�1. However, it is clear that none of the components of
f (t) belongs to the space L p({+).

302 DURAN AND LOPEZ-RODRIGUEZ



File: 640J 307305 . By:CV . Date:16:07:01 . Time:06:07 LOP8M. V8.0. Page 01:01
Codes: 2639 Signs: 1501 . Length: 45 pic 0 pts, 190 mm

Observe that if f =( fi, j)1�i�n, 1� j�N , and we call fi to the rows of f, we
have for p�1

{( f (t) M(t)2�p f (t)*) p�2=\ :
n

i=1

fi (t) M(t)2�p fi (t)*+
p�2

=\ :
n

i=1

& fi (t) M(t)1�p&2
E+

p�2

,

which is the norm 2�p in Rn of the vector

(& f1(t) M(t)1�p& p
E , ..., & fn(t) M(t)1�p& p

E),

where & }&E denotes the 2 norm in RN.
By using now that norms 2�p and 1 are equivalent in Rn, there exist two

positive constants C1 and C2 such that

C1 :
n

i=1

& fi (t) M(t)1�p& p
E�\ :

n

i=1

& fi (t) M(t)1�p&2
E+

p�2

�C2 :
n

i=1

& fi (t) M(t)1�p& p
E ,

and from this formula we obtain by integrating that

C1 :
n

i=1

& fi& p
p, +�& f & p

p, +�C2 :
n

i=1

& fi& p
p, + .

This property is interesting since it reduces the study of the spaces of
matrix functions L p

n(+) to the study of the space of vector functions
L p

1(+). For example, to study density questions in the spaces L p
n(+), given

a positive definite matrix of measures, the space of polynomials Cn_N[x]
is dense in L p

n(+) if and only if the space of polynomials CN[x] is dense
in the space L p

1(+), because if it is possible to approximate by polynomials
in norm p all the rows of a function f, then it is possible to approximate
by polynomials in norm p the function f, and vice versa. From now on, we
denote by L p(+) the space L p

1(+).
We prove first that & }&p, + is a norm in L p

n(+). The following lemma is
straightforwardly proved:

Lemma 2.1. If M is a positive semidefinite numerical matrix, then it
defines an inner product in Mn_N(C) given by (a, b)={(aMb*). Moreover,
&a&M=(a, a)1�2 is a seminorm in Mn_N(C).
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From now on, if a # Mn_N(C), M is a numerical positive semidefinite
matrix, and 1�p<�, we use the following notation: &a&M, p=
{(aM 2�pa*)1�2. For p=�, we define &a&M, �={(aPa*)1�2, and P is as
defined above. As a consequence of Lemma 2.1, & }&M, p is a seminorm in
Mn_N(C). The following lemma is also immediate:

Lemma 2.2. If M is a positive semidefinite matrix, p�1 and 1�p+1�q=1,
then for any vectors a, b in Mn_N(C) we have

|{(aMb*)|�&a&M, p &b&M, q .

Lemma 2.3 (Ho� lder's inequality). If 1�p<�, 1�p+1�q=1, f # L p
n(+),

and g # Lq
n(+), then {( f (t) M(t) g(t)*) # L1({+), and

&{( fMg*)&1, {+�& f &p, + &g&q, + .

Proof. It is enough to proceed as in the scalar case, using Lemma 2.2 K

We next prove that L p
n(+) is a Banach space.

Theorem 2.4. If 1�p��, the space L p
n(+) is a Banach space, Hilbert

for p=2.

Proof. To prove that & }&p, + is a norm it is again enough to proceed as
in the scalar case.

Given +=(+i, j)
N
i, j=1 a positive definite matrix of measures and M=

(mi, j)
N
i, j=1 its Radon�Nikodym derivative, the eigenvalues *i (t) associated

to M(t) are real and non-negative because M(t) is positive semidefinite for
any real number t. Moreover, from %�M(t)�I we deduce that 0�*i (t)�1,
for any eigenvalue *i (t) of M(t). We call 0�*1(t)� } } } �*N(t)�1 to the
eigenvalues of M(t) and v1(t), ..., vN(t) to a basis of CN formed with eigen-
vectors of M(t) associated to *1(t), ..., *N(t), respectively. We can choose
the eigenvectors satisfying vi (t) vj (t)*=$i, j .

Given a function f : R � Mn_N(C), we can express it in the following
way,

:
N

i=1

:1, i (t) vi (t)

f (t)=\ b + , (2.1)

:
N

i=1

:n, i (t) vi (t)
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where :j, i (t) are measurable functions, 1�i�N, 1� j�n. Observe that if
for M(t0) the first k eigenvectors v1(t0), ..., vk(t0) are associated to the
eigenvalue 0, the values :j, 1(t0), ..., :j, k(t0) are not important, since for the
spaces L p

n(+), 1�p��, vi (t0) can be identified with the null vector,
1�i�k. We assume that these values are 0.

Suppose first that 1�p<�. According to the definition, f # L p
n(+) if

and only if {( f (t) M(t)2�p f (t)*)1�2 # L p({+).
We have

{( f (t) M(t)2�p f (t)*) p�2=\ :
n

j=1

:
N

i=1

*i (t)2�p |:j, i (t)| 2 |vi (t)| 2
E+

p�2

=\ :
n

j=1

:
N

i=1

*i (t)2�p |:j, i (t)| 2+
p�2

, (2.2)

which is the norm 2�p of the n_N matrix

*1(t) |:1, 1(t)| p } } } *N(t) |:1, N(t)| p

\ b . . . b + .

*1(t) |:n, 1(t)| p } } } *N(t) |:n, N(t)| p

Since the norms 2�p and 1 are equivalent in Rn_N, there exist two positive
constants C1 and C2 such that

C1 :
n

j=1

:
N

i=1

*i (t) |:j, i(t)| p�\ :
n

j=1

:
N

i=1

*i (t)2�p |:j, i (t)|2+
p�2

�C2 :
n

j=1

:
N

i=1

*i (t) |:j, i (t)| p

and hence, f # L p
n(+) is equivalent to *i (t)1�p :j, i (t) # L p({+), 1�i�N,

1� j�n. If we consider the space

3p=�
N

i=1

L p({+/[*i{0] , Cn)

whose elements are matrix functions (hj, i)1� j�n, 1�i�N such that hj, i #
L p({+/[*i{0]), \i, j, we can define an operator Tp : L p

n(+) � 3p in the
following way: if we express f as in (2.1), we define

*1(t)1�p :1, 1(t) } } } *N(t)1�p :1, N(t)

Tp( f )=\ b . . . b + .

*1(t)1�p :n, 1(t) } } } *N(t)1�p :n, N(t)
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It is clear that Tp is linear and bijective between L p
n(+) and 3p , and if we

consider in the space 3p the norm & }&3p
given by

&h&3p
=& &h(t)&E&p, {+=\|R

{(h(t) h(t)*) p�2 d{++
1�p

,

we have that Tp is an isometry:

&Tp f &3p
=\|R

&Tp f (t)& p
E d{+(t)+

1�p

=\|R \ :
n

j=1

:
N

i=1

*i (t)2�p |:j, i(t)| 2+
p�2

d{+(t)+
1�p

=\|R

{( f (t) M(t)2�p f (t)*) p�2 d{+(t)+
1�p

=& f &p, + .

Hence, we have that L p
n(+) is isometric to 3p .

For p=�, from expression (2.1) we deduce that f (t) # L�
n (+) if and

only if |:j, i(t)| 2 /[*i{0](t) # L�({+), for 1�i�N, 1� j�n. Now we can
consider the space

3�=�
n

i=1

L�({+/[*i{0] , Cn)

and prove similarly that L�
n (+) is isometric to 3� .

Since the spaces 3p are Banach spaces for 1�p�� (Hilbert if p=2),
we deduce that the spaces L p

n(+) are Banach spaces for 1�p�� (Hilbert
if p=2). K

We now show how this identification allows the calculation of the dual
of the spaces L p

n(+) in a simple way.

Theorem 2.5. If 1� p<� and q is its conjugate, that is, 1�p+1�q=1,
g # Lq

n(+) and we define 4g : Lp
n(+) � C by

4g( f )=|
R

{( fMg*) d{+, for every f # L p
n(+), (2.3)

then 4 is a linear and continuous mapping, and &4&�&g&q, + . Furthermore,
if 4 : Lp

n(+) � C is linear and continuous, then there exists a unique g in
Lq

n(+) such that 4 can be expressed as in (2.3), and &4&=&g&q, + .
If {+ is _-finite, then this result holds also for L�

n (+).
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Proof. It is clear that 4 is linear, and using Ho� lder's inequality

|4( f )|�|
R

| fMg*| d{+�& f &p, + &g&q, + .

Moreover,

&4&= sup
& f &p, +�1

|4( f )|�&g&q, + .

We prove now that for 1�p<�, any linear and continuous mapping
from L p

n(+) into C can be represented as in (2.3), for a certain unique
function g # Lq

n(+).
Suppose first that 1<p<� and 4 : L p

n(+) � C is a linear and con-
tinuous mapping. Tp is an isometry; hence the composition 4T &1

p : 3p � C
is also a linear and continuous mapping. The dual space of 3p is isometric
to 3q ; hence there exists a function G=(Gj, i)1� j�n, 1�i�N # 3q such that
for any function F=(Fj, i)1� j�n, 1�i�N # 3p we have

4T &1
p (F )=|

R \ :
n

j=1

:
N

i=1

Fj, iGj, i+ d{+,

and &G&3q
=&4T &1

p &. Hence, for any function f # L p
n(+), f =

( fj, i)1� j�n, 1�i�N we have

4( f )=4T &1
p (Tp f )=|

R \ :
n

j=1

:
N

i=1

*1�p
i fj, i Gj, i+ d{+. (2.4)

We put g=T &1
q (G) # Lq

n(+), that is, G=Tq( g). Equation (2.4) can now be
written as

4( f )=|
R \ :

n

j=1

:
N

i=1

*1�p
i fj, i gj, i *1�q

i + d{+

=|
R \ :

n

j=1

:
N

i=1

*i fi gi+ d{+

=|
R

{( fMg*) d{+,

and we also have

&4&= sup
& f &p, +=1

|4( f )|= sup
&F&3p

=1

|4T &1
p (F )|=&4T &1

p &

=&G&3q=&Tq(g)&3q=&g&q, + .

Hence the dual space of L p
n(+) is isometric to Lq

n(+).
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For p=�, it is enough to proceed in the same way. K

To complete the study of the spaces L p
n(+), we prove the continuity of

the inclusions L p
n(+)�Lq

n(+) (q>p) when {+(R)<�.

Theorem 2.6. If + is a positive definite matrix of measures such that
{+(R)<�, then

(1) L�
n (+)�L1

n(+) and the inclusion is continuous, since for any
function f in L�

n (+) we have

& f &1, +�{+(R) & f &�, + .

(2) If 1� p<q, L p
n(+)�Lq

n(+) and also in this case the inclusion is
continuous, since for any function f in Lp

n(+) we have

& f &q, +�{+(R)1�q&1�p & f &p, + .

Proof. (1) Taking into account that %�M2�M�P�I we have that
given a function f in L�

n (+),

& f &1, +=|
R

{( fM2f *)1�2 d{+�|
R

{( fPf*)1�2 d{+�{+(R) & f &�, + .

(2) From p>q and %�M�I we deduce %�M 1�q�M 1�p. Given f a
function in L p

n(+), we have that the function {( fM2�pf *)q�2 # L p�q({+), and
since {+(R)<�, the constant function 1 # L p�(q&p)({+) ( p�( p&q) is the
conjugate exponent of p�q). From the inequality for M and using Ho� lder's
inequality in the scalar case we deduce

& f &q
q, +=|

R

{( fM2�qf *)q�2 d{+�|
R

{( fM2�pf *)q�2 d{+

�\|R

d{++
( p&q)�p

\|R

{( fM 2�pf *) p�2 d{++
q�p

={+(R)( p&q)�p & f &q
p, + .

By taking now q th root we obtain the result. K

3. COMPACTNESS OF THE SET OF SOLUTIONS OF A
MATRIX MOMENT PROBLEM

In this section we study some topological properties of the space of
matrices of measures. As a consequence it will be proved that the set of
solutions for a matrix moment problem is, as in the scalar case, a compact
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convex set. This result will guarantee the existence of extremal points in the
set of solutions, which will be of some utility in studying the density of
polynomials in the space L1 of a matrix of measures.

We put MN for the set of positive definite matrices of measures, and M*N for
the set of positive definite matrices of measures with finite moments of any order.

Given + # M*N , we consider the set [+] defined by

[+]={& # M*N such that |
R

tn d&i, j=|
R

tn d+i, j ,

for any n # N and for 1�i, j�N= ,

that is, the set of positive definite matrices of measures whose moments are
the same as those of +, or equivalently, the set of solutions for the matrix
moment problem defined by +.

The vague topology on MN is the coarsest topology for which the map-
pings + � �R f d+ are continuous, where f # Cc(R) is arbitrary. Cc(R)
denotes the set of continuous functions with compact support defined on R.
The weak topology on MN is the coarsest topology for which the mappings
+ � �R fd+ are continuous, where f # Cb(R) is arbitrary. Cb(R) denotes the
set of continuous and bounded functions defined on R.

Since C(R) is strictly included in Cc(R) it is clear that the vague topology
is finer, that is, it has less open sets, than the weak topology. It is not hard
to see that both topologies are Hausdorff.

If A�Cc(R) is an arbitrary set spanning Cc(R) then the vague topology
is also the coarsest for which all the mappings + � �R f d+ are continuous,
where f ranges through A. We will use this remark for A=C+

c (R).
In our first result we establish the relationship between the vague and

weak convergence.

Theorem 3.1. Given (+:): # A and + in MN finite (that is, {+:(R)<�
and {+(R)<�) we have that +: � + weakly if and only if +: � + vaguely
and lim: {+:(R)={+(R).

The proof of Theorem 3.1 follows from the following lemmas.

Lemma 3.2. Suppose (+:): # A , + in MN , +: � + vaguely, and g : R �
[0, �) is a continuous function. Then

(1) If lim sup: # A �R gd{+:<� then

|
R

g d{+<� and lim
: |

R

f d+:, i, j=|
R

f d+i, j ,

for any f # o( g) and for any 1�i, j�N.
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(2) If lim: # A �R g d{+:=�R g d{+<� then

lim
: |

R

f d+:, i, j=|
R

f d+i, j ,

for any f # O( g) and for any 1�i, j�N.

Proof. The first part of (1) follows as in the scalar case.
The second part of (1) is also analogous to the scalar case, and follows

by using that for a positive definite matrix of measures the trace bounds all
the components. Suppose now that f # o(g) and =>0 are given. There
exists a compact set K such that | f (x)|�=g(x), for any x # K C. Let
, # C +

c (R) be chosen such that /K�,�1. Then we have | f | (1&,)�=g
and hence

} |R

f d+i, j&|
R

f d+:, i, j }
� } |R

f d+i, j&|
R

f, d+i, j }+ } |R

f, d+i, j&|
R

f, d+:, i, j }
+ } |R

f, d+:, i, j&|
R

f d+:, i, j }
�= |

R

g d |+i, j |+ }|R

f, d(+i, j&+:, i, j) }+= |
R

g d |+:, i, j |

�= |
R

g d{++ } |R

f, d(+i, j&+:, i, j) }+= |
R

g d{+: .

Taking lim sup: yields

lim sup
: } |R

f d+i, j&|
R

f d+:, i, j }�=(c1+c2)

and since = was arbitrary we deduce that

lim sup
: } |R

f d+i, j&|
R

f d+:, i, j }=0

which gives the result.

(2) The proof of (2) is also analogous to the scalar case, using the
same inequalities as above and that the trace bounds the components of a
positive definite matrix of measures. K
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The following lemma is a consequence of the previous one:

Lemma 3.3. Suppose +: � + vaguely. We have:

(1) If lim sup: {+:(R)<� then {+(R)<� and

lim
: |

R

f d+:, i, j=|
R

f d+i, j ,

for any f # o(1) and for any 1�i, j�N.

(2) If lim: {+:(R)={+(R) then

lim
: |

R

f d+:, i, j=|
R

f d+i, j ,

for any f # O(1) and for any 1�i, j�N.

Proof of Theorem 3.1. It is clear that if +: � + weakly then +: � +
vaguely, and furthermore, since {+: � {+ weakly, taking f =1 in the defini-
tion of weak convergence we have {+:(R) � {+(R).

On the other hand, if +: � + vaguely and {+:(R) � {+(R), from part (2)
of Lemma 3.3 and since all the functions in Cb(R) are bounded and thus
belong to O(1), we deduce that +: � + weakly. K

It is of some interest to know if the vague topology on MN is metrizable,
because then the topological notions can be expressed in terms of sequences
instead of nets. We have the following theorem:

Theorem 3.4. MN is metrizable in the vague topology.

The proof is not very different from the one given in [1] for the one-
dimensional case. In Problems 1.1 of Section 7.7 and 2 of Section 7.8 of [1]
it is proved that given a sequence of functions D=('n)n in Cc(R) satisfying:

(1) For any compact set K�R there exists a relatively compact
neighbourhood U of K such that every function f # Cc(R) with supp f �K
is uniformly approximable in R by functions in D whose support lies
inside U.

(2) For those K and U, there exists a 'n with 0�/K�'n�1.

we have that a sequence of measures +n converges vaguely to + if and
only if

lim
n � � |

R

' d+n=|
R

' d+, for every ' # D.
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Furthermore, if we define

\(+, &)= :
�

n=1

1
2n min {1, } |R

'n d+&|
R

'n d& }= ,

\ is a metric on M1 and the corresponding topology is the vague topology.
In a similar way it is possible to prove that MN is metrizable, defining for
two matrices of measures +=(+i, j)1�i, j�N , &=(&i, j)1�i, j�N

\(+, &)= :
�

n=1

1
2n min {1, max

1�i, j�N } |R

'n d+i, j&|
R

'n d&i, j }= .

\ is a metric on MN and the corresponding topology is the vague topology.
We prove next that the positive definite character of matrices of measures

is preserved under weak and vague limit:

Theorem 3.5. If (+n)n are finite matrices of measures in MN and
+=(+i, j)1�i, j�N is a finite matrix of measures, and +n � + vaguely, then +
is positive definite. That is, the positive definite character is preserved under
vague limit.

To prove this theorem we will use the following lemma:

Lemma 3.6. Given +=(+i, j)1�i, j�N a finite matrix of measures, the
following properties are equivalent:

(1) For any Borel set A the numerical matrix (+i, j (A))1�i, j�N is
positive semidefinite.

(2) For any f # C +
c (R), the numerical matrix (�R f d+i, j)1�i, j�N is

positive semidefinite.

Proof. (2) O (1) Given an interval (a, b)�R, we consider fn an
increasing sequence of functions in C+

c (R) such that fn � /(a, b) pointwise.
By considering the Hahn decomposition for the matrix of measures
+ : +=+1&+2+i(+3&+4), where all the measures in the matrix of measures
+i are positive measures and using that these measures are bounded by the
measure {+, the monotone convergence theorem gives that for any 1�i,
j�N,

+((a, b))=|
R

/(a, b)(t) d+(t)= lim
n � � |

R

fn(t) d+(t).

Since all the numerical matrices �R fn(t) d+(t) are positive semidefinite
+((a, b)) is also a positive semidefinite matrix. By using now the regularity
of + we deduce that +(A) is positive semidefinite, for any Borel set A.
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Suppose now (1) and let us prove (2). Suppose on the contrary that
there exists f # C +

c (R) such that the numerical matrix (�R f d+i, j)1�i, j�N

is not positive semidefinite; that is, there exists a non-zero vector c=
(c1 , ..., cN) such that c(�R f d+i, j) c*�3 0. Let us put

d=dist {c \|R

f d+i, j+ c*, [x # R, x�0]=>0.

Clearly,

d� }Ic \|R

f d+i, j+ c* } . (3.1)

Since f # C +
c (R), we can find a simple function f0=�k0

k=1 ai /Ak
, with

ak�0, which approximates f in the following way:

& f & f0&��
d

2N2 max
1�i�N

|ci |
2 max

1�i, j�N
&+i, j&

.

From the equality

c \|R

f d+i, j+ c*=c \|R

( f & f0) d+i, j+ c*+c \|R

f0 d+i, j+ c*,

taking into account that

} c \|R

( f & f0) d+i, j+ c* }�2N 2 max
1�i�N

|ci |
2 max

1�i, j�N
&+i, j& & f & f0&��

d
2

and that

c \|R

f0 d+i, j+ c*=c \ :
k0

k=1

ak +i, j (Ak)+ c*= :
k0

k=1

ak c+i, j (Ak) c*�0

we deduce that

}Ic \|R

f d+i, j+ c* }= }Ic \|R

( f & f0) d+i, j+ c* }
� } c \|R

( f & f0) d+i, j+ c* }�d
2

which contradicts (3.1). K

Proof of Theorem 3.5. Suppose +n � + vaguely, where +n # MN . We
must prove that the matrix of measures + is positive definite. Suppose on
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the contrary that + is not positive definite; then by Lemma 3.6 there exists
f # C +

c (R) such that the numerical matrix (�R f d+) is not positive semi-
definite. Now the proof finishes like the proof of (1) O (2) in Lemma 3.6. K

To finish this section we prove that the set of solutions to a matrix
moment problem is vaguely and weakly compact and convex.

Theorem 3.7. [+] is a compact convex set in the weak and vague
topology coinciding on [+].

This result is an immediate consequence of the three following lemmas.

Lemma 3.8. The set [+ # MN : {+(R)�1] is vaguely compact.

Proof. Given (+n)n # N in [+ # MN : {+(R)�1], we decompose again
+n=+1

n&+2
n+i(+3

n&+4
n), +i

n being matrices of measures in which all the
entries are positive measures. Since |+n, i, j|�{+n for every n we deduce that
all these measures are bounded by a fixed constant, and since the set of
positive measures [+�0, &+&�a] is vaguely compact (see, for instance,
[1]) we can find +0=(+0, i, j)1�i, j�N such that +n � +0 vaguely. It follows
by Theorem 3.5 that +0 is a positive definite matrix of measures. {+0(R)�1
is immediate by using that {+n � {+0 vaguely. K

Lemma 3.9. Given + a matrix of measures in M*N , [+] is a relatively
vaguely compact set.

Proof. For every & # [+] it is clear that {&(R)={+(R). By Lemma 3.8,
the set [& # MN : {&(R)�{+(R)] is vaguely compact, and hence vaguely
closed. We have [+]�[& # MN : {&(R)�{+(R)], so by taking closure we
get [+]�[& # MN : {&(R)�{+(R)]. Now the set [+] is a closed set inside
a compact set and consequently it is compact. K

Lemma 3.10. Given + a matrix of measures in M*N , the set [+] is a
vaguely closed set.

Proof. If +n � + vaguely, then by Theorem 3.5 +�0, and taking into
account that all the matrices of measures +n have the same moments, we
deduce that lim supn �R t 2n0 d{+n<� and hence for any polynomial p(t)�0
we have lim supn �R p(t) d{+n<�.

Given a natural number n0 we consider the polynomial p(t)=
(1+t2n0)(1+t2). Clearly tn0 # o( p(t)) and hence Lemma 3.2 gives

lim
n |

R

t n0 d+n, i, j=|
R

tn0 d+i, j for every 1�i, j�N;

that is, the moments of + coincide with those of +n . K
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Proof of Theorem 3.7. The vague and weak topologies coincide on [+]
because if +: and + belong to [+], and +: � + vaguely, since the moments
of {+: and {+ are the same, the condition {+(R): � {+(R) is trivially
fulfilled, and according to Theorem 3.1 this implies that +: � +. From
Lemmas 3.9 and 3.10 it follows that [+] is compact. Finally, it is clear that
[+] is convex. K

4. A DENSITY THEOREM FOR L1(+)

We now extend Naimark's theorem about density of polynomials in
L1

n(+). Naimark's theorem states that the polynomials are dense in L1(+),
+ is a positive measure with moments of any order, if and only if + is an
extremal point of the convex set [&�0: � tn d&=� tn d+, n�0]. So let + be
a positive definite matrix of measures with moments of any order so that
the polynomials are included in L1

n(+).
In the scalar case the trace of + coincides with + and then the matrix

of Radon�Nikodym derivatives is M(t)=1. Observe that the eigenvalues of
M(t) are in this case reduced to 1. In the matrix case the eigenvalues of
M(t) have a more complicated structure. To extend Naimark's theorem to
the matrix case we need as an additional hypothesis that the eigenvalues of
M(t) do not approach 0, as in the scalar case:

Proof of Theorem 1. It is enough to prove the theorem for n=1.
To prove that (1) implies (2), we suppose that the polynomials are not

dense in L1(+) and we prove that + is not extremal in [+]. In that case,
we can find a non-zero functional 4 in the dual space of L1(+), with
norm 1, such that 4( p)=0 for any polynomial p. From the duality
theorem for L1(+) we can represent this functional with a function
g=( g1 , ..., gN) in L�(+) with norm 1 by

4( f )=|
R

f (t) M(t) g(t)* d{+(t), for every function f # L1(+).

Since 4(p)=0 for any polynomial p we deduce that the measures in the
entries of M(t) g(t)* d{+ have all null moments, and one of these measures
is not zero since on the contrary we would have 4#0. We put d(t) d{+
for the real or imaginary non-zero part of one of these measures, and we
suppose it is obtained when multiplying the i0th row of M(t) with the
vector g(t)*. Observe that

|d(t)|�|mi0 , 1(t) g1(t)+ } } } +mi0 , N(t) gN (t)|�N
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because |mi, j |�1 and | gi |�1, for 0�i, j�N. We decompose + in the
following way:

+=
1
2 {\M(t)+

=
2N

d(t) I+ d{++\M(t)&
=

2N
d(t) I+ d{+=

=
1
2

(+1++2).

From the construction, it is clear that +1 and +2 both have the same
moments as +. Let us see now that these two matrices of measures are
positive definite. For this it is enough to see that for every point t in the
support of + the numerical matrices M(t)\(=�2N ) d(t) I are positive semi-
definite. Given an arbitrary vector c in CN we write it as c=�N

i=1 ci vi ,
where v1 , ..., vn is an orthonormal basis of CN, vi associated to *i . We then
have that

c \M(t)\
=

2N
d(t) I+ c*= :

N

i=1

|ci |
2 *i (t)\

=
2N

d(t) :
N

i=1

|ci |
2

�= :
N

i=1

|ci |
2&

=
2N

N :
N

i=1

|ci |
2

=
=
2

:
N

i=1

|ci |
2�0

and hence both matrices of measures are positive definite.
To prove now that (2) implies (1), suppose that + is not extremal in the

set [+] and let us prove that the polynomials are not dense in the space
L1(+). Suppose then that + admits the decomposition += 1

2 (+1++2),
where +1 and +2 are two matrices of measures in the set [+], none of them
equal to +. Since +1�2+�2{+I and +2�2+�2{+I, we can express
+1=M1(t) d{+ and +2=M2(t) d{+, the matrices M1(t) and M2(t) being the
Radon�Nikodym derivatives of the matrices +1 and +2 with respect to {+,
respectively, that is,

+=M(t) d{+= 1
2(M1(t)+M2(t)) d{+.

Since + is not equal to +1 we have that M(t) is not equal to M1(t) and
hence there exists a vector ei0

=(0, ..., 1, ..., 0), where the 1 is at the position
i0 such that M(t) e*i0{M1(t) e*i0 . We define the operators T and T1 acting
on L1(+) by

T( f )=|
R

f (t) M(t) e*i0 d{+ and T1( f )=|
R

f (t) M1(t) e*i0 d{+ .
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It is clear that both of them are linear and that T is continuous because ei0
belongs to L�(+). To show that T1 is also continuous, observe first that
from M1�2M�2I we get M 2

1�4I. Moreover, since *1�= we have that
M�=I and so M 2�=2I. Hence if we call C=4�=2 we have CM 2�4I�M 2

1 .
From this and from Lemma 2.2 we have

|T1( f )= } |R

f (t) M1(t) e*i0 d{+ }
�|

R

| f (t) M1(t) e*i0
| d{+

�|
R

( f (t) M 2
1(t) f (t)*)1�2 (ei0

M 2
1(t) e*i0)

1�2 d{+

�- 2 C 1�2 |
R

( f (t) M 2
1(t) f (t)*)1�2 d{+

=- 2 C & f &1, + .

Then if we define R=T&T1 , R is a non-null operator acting on L1(+)
which vanishes on the polynomials; hence the polynomials are not dense in
the space L1(+), and the result is proved. K

As we proved in Section 3 the set [+] is compact and convex. This
guarantees the existence of extremal points. The general question, whether
these extremal points are the same as those having dense polynomials in
their corresponding spaces L1(+), without conditions on the structure of
the eigenvalues of their Random�Nykodym matrix of derivatives, is thus
left as an open problem.
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